Subscribe to RSS
DOI: 10.1055/s-0029-1245936
© Georg Thieme Verlag KG Stuttgart · New York
Estimation of Longitudinal Shear Strain in the Carotid Arterial Wall Using Ultrasound Radiofrequency Data
Schätzung der Scherdehnung in der Arteria carotis unter Verwendung von UltraschallhochfrequenzdatenPublication History
received: 6.4.2010
accepted: 18.11.2010
Publication Date:
11 January 2011 (online)

Zusammenfassung
Ziel: Der primäre Auslöser für einen Myokardinfarkt oder Schlaganfall ist eine Mobilisierung von arteriosklerotischen Plaques. Es wird vermutet, dass Scherdehnungsmechanismen (Shear Strain) in der Adventitia die Entwicklung hin zu brüchigen, instabilen Plaques initiiert und/oder stimuliert. Daher könnte die Untersuchung der Scherdehnung eine Prognoseeinschätzung bezüglich der Entwicklung von instabilen Plaques ermöglichen. Material und Methoden: Mithilfe von Simulationen und Phantom-Experimenten wurde die Scherdehnung mittels Radiofrequenz(RF)- und Envelope-basierten Methoden ermittelt und mit den angewandten Werten verglichen. Zusätzlich wurden Scherdehnungssmessungen in der Adventitia von 6 gesunden Probanden vorgenommen. Ergebnisse: In beiden Experimenten war die Varianz der RF-basierten Werte deutlich kleiner als die der Envelope-basierten Werte (Wilcoxon, p < 0,05). Die Periodizität der Scherdehnungswerte der Probanden stimmte gut mit dem jeweiligen Herzzyklus überein. Die ermittelten Werte waren bereits zuvor publizierten Daten vergleichbar. Darüber hinaus war die Signal-Rausch-Rate der Scherdehnungswerte in der hinteren Gefäßwand, die mit der RF-basierten Methode ermittelt wurden, signifikant höher als die auf Basis der Envelope-Methode ermittelten Werte (Wilcoxon, p < 0,05). Schlussfolgerung: Nicht invasiver Ultraschall mit radiofrequenzbasierten Methoden scheint geeignet zu sein, die Scherdehnung in der Adventitia der Arteria carotis zu bestimmen.
Abstract
Purpose: The primary trigger for myocardial infarction and stroke is destabilization of atherosclerotic plaques. It is hypothesized that shear strain in the adventitia initiates and/or stimulates development of these plaques into rupture-prone, vulnerable plaques. Therefore, assessment of shear strain might yield a prognosis for the development of vulnerable plaques. Materials and Methods: In simulations and phantom experiments, longitudinal shear strain was estimated using RF and envelope-based methods and compared to the applied values. Additionally, longitudinal shear strain estimates in the adventitia of six healthy volunteers were determined. Results: In both experiments, the variance of the RF-based estimates was significantly smaller than that of the envelope-based estimates (Wilcoxon, p < 0.05). The periodicity of these estimates corresponded well with the cardiac cycle. The estimated values were found to be similar to previously published data. Furthermore, the signal-to-noise ratio of the shear strain estimate in the posterior wall based on RF-data was significantly higher (Wilcoxon, p 0 < 0.05) than that based on envelope-data. Conclusion: In conclusion, noninvasive ultrasound strain imaging using radiofrequency signals appeared to allow adequate estimation of longitudinal shear strain in the adventitial layer of the carotid artery wall.
Key words
carotid arteries - ultrasound - arteriosclerosis
References
- 1
Lloyd-Jones D, Adams R, Carnethon M et al.
Heart disease and stroke statistics – 2009 update: a report from the American Heart
Association Statistics Committee and Stroke Statistics Subcommittee.
Circulation.
2009;
119
e21-e181
MissingFormLabel
- 2
Weintraub H S.
Identifying the vulnerable patient with rupture-prone plaque.
Am J Cardiol.
2008;
101
3F-10F
MissingFormLabel
- 3
Kolodgie F D, Burke A P, Skorija K S et al.
Lipoprotein-associated phospholipase A 2 protein expression in the natural progression
of human coronary atherosclerosis.
Arterioscler Thromb Vasc Biol.
2006;
26
2523-2529
MissingFormLabel
- 4
Korte C L, Steen van der A FW.
Intravascular ultrasound elastography: an overview.
Ultrasonics.
2002;
40
859-865
MissingFormLabel
- 5
Schaar J A, Korte de C L, Mastik de F et al.
Three-dimensional palpography of human coronary arteries. Ex vivo validation and in-patient
evaluation.
Herz.
2005;
30
125-133
MissingFormLabel
- 6
Maurice R L, Daronat M, Ohayon J et al.
Non-invasive high-frequency vascular ultrasound elastography.
Physics in Medicine and biology.
2005;
50
1611-1628
MissingFormLabel
- 7
Ribbers H, Lopata R G, Holewijn S et al.
Noninvasive two-dimensional strain imaging of arteries: validation in phantoms and
preliminary experience in carotid arteries in vivo.
Ultrasound Med Biol.
2007;
33
530-540
MissingFormLabel
- 8
Hansen H H, Lopata R G, De Korte C L.
Noninvasive carotid strain imaging using angular compounding at large beam steered
angles: validation in vessel phantoms.
IEEE Trans Med Imaging.
2009;
28
872-880
MissingFormLabel
- 9
Idzenga T, Pasterkamp G, De Korte C.
Shear strain in the adventitial layer of the arterial wall facilitates development
of vulnerable plaques.
Bioscience Hypotheses.
2009;
2
339-342
MissingFormLabel
- 10
Hasaneen N A, Zucker S, Lin R Z et al.
Angiogenesis is induced by airway smooth muscle strain.
Am J Physiol Lung Cell Mol Physiol.
2007;
293
L1059-L1068
MissingFormLabel
- 11
Kou B, Zhang J, Singer D R.
Effects of cyclic strain on endothelial cell apoptosis and tubulogenesis are dependent
on ROS production via NAD(P)H subunit p22phox.
Microvasc Res.
2009;
125-133
MissingFormLabel
- 12
Morrow D, Cullen J P, Cahill P A et al.
Cyclic strain regulates the Notch/CBF-1 signaling pathway in endothelial cells: role
in angiogenic activity.
Arterioscler Thromb Vasc Biol.
2007;
27
1289-1296
MissingFormLabel
- 13
Techavipoo U, Chen Q, Varghese T et al.
Noise reduction using spatial-angular compounding for elastography.
IEEE Trans Ultrason Ferroelectr Freq Control.
2004;
51
510-520
MissingFormLabel
- 14
Von Offenberg S N, Cummins P M, Cotter E J et al.
Cyclic strain-mediated regulation of vascular endothelial cell migration and tube
formation.
Biochem Biophys Res Commun.
2005;
329
573-582
MissingFormLabel
- 15
Moreno P R, Purushothaman K R, Fuster V et al.
Plaque neovascularization is increased in ruptured atherosclerotic lesions of human
aorta: implications for plaque vulnerability.
Circulation.
2004;
110
2032-2038
MissingFormLabel
- 16
Arbustini E, Morbini P, D’Armini A M et al.
Plaque composition in plexogenic and thromboembolic pulmonary hypertension: the critical
role of thrombotic material in pultaceous core formation.
Heart.
2002;
88
177-182
MissingFormLabel
- 17
Ku D N.
Blood flow in arteries.
Annual Review of Fluid Mechanics.
1997;
29
399-434
MissingFormLabel
- 18 Nichols W W, O’Rourke M F. McDonald’s Blood Flow in Arteries. London; 1998
MissingFormLabel
- 19
Cinthio M, Ahlgren A R, Jansson T et al.
Evaluation of an ultrasonic echo-tracking method for measurements of arterial wall
movements in two dimensions.
IEEE Trans Ultrason Ferroelectr Freq Control.
2005;
52
1300-1311
MissingFormLabel
- 20
Cinthio M, Jansson T, Persson H W et al.
Non-invasive measurements of longitudinal strain of the arterial wall.
Proceedings IEEE Ultrasonics symposium.
2007;
10
570-572
MissingFormLabel
- 21
Cinthio M, Ahlgren A R, Bergkvist J et al.
Longitudinal movements and resulting shear strain of the arterial wall.
Am J Physiol Heart Circ Physiol.
2006;
291
H394-H402
MissingFormLabel
- 22
Persson M, Ahlgren A R, Eriksson A et al.
Non-invasive measurement of arterial longitudinal movement.
Proceedings IEEE Ultrasonics symposium.
2002;
5
1783-1786
MissingFormLabel
- 23
Persson M, Ahlgren A R, Jansson T et al.
A new non-invasive ultrasonic method for simultaneous measurements of longitudinal
and radial arterial wall movements: first in vivo trial.
Clin Physiol Funct Imaging.
2003;
23
247-251
MissingFormLabel
- 24
Shi H, Mitchell C C, McCormick M et al.
Preliminary in vivo atherosclerotic carotid plaque characterization using the accumulated
axial strain and relative lateral shift strain indices.
Phys Med Biol.
2008;
53
6377-6394
MissingFormLabel
- 25
Golemati S, Sassano A, Lever M J et al.
Carotid artery wall motion estimated from B-mode ultrasound using region tracking
and block matching.
Ultrasound Med Biol.
2003;
29
387-399
MissingFormLabel
- 26
Lopata R G, Nillesen M M, Hansen H H et al.
Performance Evaluation of Methods for two-Dimensional Displacement and Strain Estimation
Using Ultrasound Radio Frequency Data.
Ultrasound Med Biol.
2009;
796-812
MissingFormLabel
- 27
Konofagou E, Ophir J.
A new elastographic method for estimation and imaging of lateral displacements, lateral
strains, corrected axial strains and Poisson’s ratios in tissues.
Ultrasound Med Biol.
1998;
24
1183-1199
MissingFormLabel
- 28
Chen H, Varghese T.
Multilevel hybrid 2D strain imaging algorithm for ultrasound sector/phased arrays.
Medical physics.
2009;
36
2098-2106
MissingFormLabel
- 29
Varghese T, Bilgen M, Ophir J.
Multiresolution imaging in elastography.
IEEE Trans Ultrason Ferroelectr Freq Control.
1998;
45
65-75
MissingFormLabel
- 30
Jensen J A.
A model for the propagation and scattering of ultrasound in tissue.
J Acoust Soc Am.
1991;
89
182-190
MissingFormLabel
- 31 Ganong W F. Review of medical physiology. Appleton & Lange; 1997 18 ed
MissingFormLabel
- 32
Chu K C, Rutt B K.
Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow
and elasticity.
Magn Reson Med.
1997;
37
314-319
MissingFormLabel
- 33
Idzenga T, Pel J JM, Mastrigt van R.
A biophysical model of the male urethra: comparing viscoelastic properties of polyvinyl
alcohol urethras to male pig urethras.
Neurourol Urodyn.
2006;
25
451-460
MissingFormLabel
- 34
Kallel F, Ophir J.
A least-squares strain estimator for elastography.
Ultrasonic Imaging.
1997;
19
195-208
MissingFormLabel
- 35
Alam S K, Ophir J.
Reduction of signal decorrelation from mechanical compression of tissues by temporal
stretching: applications to elastography.
Ultrasound Med Biol.
1997;
23
95-105
MissingFormLabel
- 36
Lopata R GP, Nillesen M M, Gerrits I H et al.
3D cardiac strain imaging using a novel tracking method.
eMBEC Proceedings.
2009;
; in press
MissingFormLabel
Dr. Tim Idzenga
Dept. of Pediatrics, Clinical Physics Laboratory, Radboud University Nijmegen Medical
Centre
PO Box 9101
6500 HB Nijmegen
Netherlands
Phone: ++ 31/24/3 66 89 68
Fax: ++ 31/24/3 61 64 28
Email: t.idzenga@cukz.umcn.nl